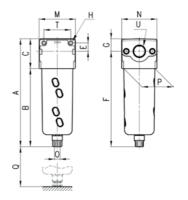
Coalescing filters Series MC

Ports G1/4, G3/8 and G1/2 Modular Metal bowl and bayonet-type mounting

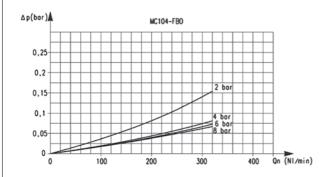
The Series MC coalescing filters are available with G1/4, G3/8 and G1/2 ports. The bowls of these filters are made of metal with a transparent sight glass and may have a condensate drain valve which can provide either a manual or semi-automatic function. Moreover a fully automatic condensate drain is also available.

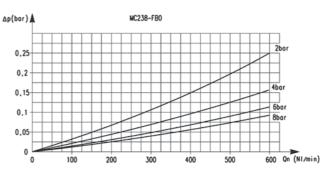
GENERAL DATA Construction modular, coalescing elements Materials zama, NBR, technopolymer **Ports** G1/4 G3/8 G1/2 cm3 28 78 Max. condensate capacity 78 kg 0,342 0,718 0,688 Weight Mounting vertical in line or wall-mounting Operating temperature 0°C ÷ 50°C at 10 bar Porosity of filtering element 0,01µm manual - semi-automatic standard Draining of condensate Finish Operating pressure with standard drain and protected depressurisation 0,3 ÷ 16 bar - with depressurisation 0,3 ÷ 10 bar - with automatic drain 1,5 ÷ 12 bar for G3/8 and G1/2 Nominal flow see graph


CODING EXAMPLE

02 F В 0 MC 2

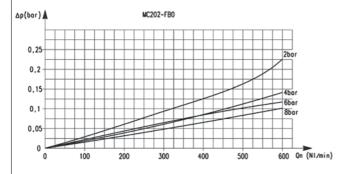
MC	SERIES
2	SIZE: 1 = G1/4 2 = G3/8 - G1/2
02	PORTS: 04 = G1/4 38 = G3/8 02 = G1/2
F	F = FILTER
В	FILTERING ELEMENT: B = 0,01μm
0	DRAINING OF CONDENSATE: 0 = manual - semi-automatic 3 = automatic (only for G3/8 and G1/2) 4 = depressurisation (only G1/4) 5 = depressurisation, protected 8 = port 1/8 For condensate drains see chapter 3.5.10


Coalescing filters Series MC



DIMENSIONS														
Mod.	Α	В	С	E	F	G	Н	М	N	0	Р	Q	Т	U
MC104-FB0	143	102	41	11	126,5	16,5	4	45	45	G1/8	37	54	35	G1/4
MC238-FB0	184	133	51	14	163	21	5	62	60	G1/8	53	73	46	G3/8
MC202-FB0	184	133	51	14	163	21	5	62	60	G1/8	53	73	46	G1/2

FLOW DIAGRAMS


Flow diagram for model: MC104-FB0 ΔP = Pressure drop - Qn = Flow

In order to guarantee the indicated performances, the maximum flow of the filter is the one indicated in the graph. The filter however allows a higher rate for which these performances are not guarenteed.

Flow diagram for model: MC238-FB0 ΔP = Pressure drop - Qn = Flow

In order to guarantee the indicated performances, the maximum flow of the filter is the one indicated in the graph. The filter however allows a higher rate for which these performances are not guarenteed.

FLOW DIAGRAMS

Flow diagram for model: MC202-FB0 ΔP = Pressure drop - Qn = Flow

In order to guarantee the indicated performances, the maximum flow of the filter is the one indicated in the graph. The filter however allows a higher rate for which these performances are not guarenteed.